Abu Zeid A. Hassanien [a]*, Said A. S. Ghozlan [b] and Mohamed H. Elnagdi [b]

[a] Department of Chemistry, Faculty of Education, Suez Canal University, Arish, Egypt. [b] Department of Chemistry, Faculty of Science, Cairo University, Egypt. Received September 19, 2002

Abstract

An efficient synthesis of enaminones 1a-c is reported. Compounds 1a-c reacted with diethyl-3-amino-2-cyanopenten-1,5-dicarboxylate (3) to yield the benzonitriles $\mathbf{6}$. On the other hand, the reaction of 1a-c with 3 -amino-2-cyano-2-pentene dinitrile (7) afforded a mixture of benzonitriles $\mathbf{1 0}$ and pyridines $\mathbf{9}$. The reaction of $\mathbf{1 a}$-c with 3-aminocrotononitrile $\mathbf{1 1}$ has afforded the 4 -substituted-3-cyano-2-methylpyridines $\mathbf{1 5 a} \mathbf{- c}$. The reaction of ethylene diamine with 1a-c afforded 5-substituted-2,3-dihydro- 1 H -[1,4]diazepines 18a-c. On the other hand, 1a-c reacted with o-phenylenediamine to yield the 4 -(2-aminopheynlamino)-substituted enaminones 21. Compounds 21 could be converted into the benzotriazolylenones 22 on treatment with sodium nitrite in acetic acid solution.

In conjunction to pervious interest in exploring synthetic potential of enaminones [1-5] we report on synthesis and reactivity of 1a-c. Although 1a-c has been prepared earlier from reaction of methyl ketones with DMFDMA in refluxing toluene [5] yields of $\mathbf{1 a - c}$ under these conditions never exceeded 40%. Trials to adopt other literature procedure [6] of reacting methyl ketones with DMFDMA in refluxing acetic acid afforded in our hands only trimers 2a-c which has recently been obtained on refluxing 1a-c in AcOH [7,8]. Now we report $70-80 \%$ yield synthesis of 1a-c via refluxing a mixture of methyl ketones with little excess of DMFDMA (1:1.2 mole) for six hours in absence of solvent.

Compounds 1, so formed reacted with diethyl 3-amino-2-cyanopenten-1,5-dicarboxylate (3) to yield products of condensation via dimethylamine elimination. These were assigned structure 6 and are assumed to be formed via intermediates 4 and 5.

On the other hand, reaction of 3-amino-2-cyano-2pentene dinitrile (7) with 1a afforded a mixture of two products. These were identified as $\mathbf{9}$ and $\mathbf{1 0}$ based on spectral data. Compounds $\mathbf{9}$ and $\mathbf{1 0}$ are assumed to be formed via the common intermediate $\mathbf{8}$, which either losses water to yield 9 or cyclize via addition of electron rich double bond in $\mathbf{8}$ to the cyano group to give $\mathbf{1 0}$. But in case of $1 \mathrm{~b}, 1 \mathrm{c}$ only compound 9 could be isolated.
The reaction of 1a-c with 3-aminocrotononitrile $\mathbf{1 1}$ afforded the pyridine derivative $\mathbf{1 5}$ via the intermediates 14, but not 12. Although this reaction can afford $\mathbf{1 3}$ as

Scheme 1

6

well, structure 15 is established based on H-5, 6 coupling of pyridine which showed a value of 4 Hz , if the reaction product is $\mathbf{1 3}$ one would expect these protons to have $J \sim 9 H z$. [9].

The reaction of ethylenediamine with 1a-c in refluxing ethanol afforded the diazepene $\mathbf{1 8}$ via the nonisolable intermediate 17.
On the other hand, the reaction of 1a-c with o-phenylenediamine afforded products of condensation via dimethylamine elimination. These were assigned cis structure 21 rather than trans structure 20 based on ${ }^{1} \mathrm{H}$ NMR which revealed signals for cis olefinic protons at $\delta 6.04$ and $\delta 8.40 \mathrm{ppm},(J=9 \mathrm{~Hz})$. The predominance of this form may be due to fixation by hydrogen bonding. Attempted cyclisation of $\mathbf{2 1}$ into diazepene derivatives failed under a

Scheme 2

Scheme 3

Varity of conditions. However, diazotization afforded the trans enaminone 22, which was also obtained from reaction of benzotriazole $\mathbf{2 3}$ with 1a-c.

Scheme 4

EXPERIMENTAL

Melting points are uncorrected. IR spectra were recorded with FTIR-8201 PC spectrophotometer Shimadzu. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were obtained on a Varian Germini 200 MHz spectrometer in DMSO- d_{6} as solvent and TMS as an internal reference. Mass spectra were performed on a Shimadzu GCMS-QP-1000 EX using the direct inlet system and EI + QI MSLMRUPLR. Microanalysis were performed by the Microanalytical Unit at Cairo University.

Ethyl 2-Amino-5-aroyl-3-cyano-4-hydroxybenzoate (6a-c).
A mixture of enaminone 1a-c (0.01 mol), ethyl cyanoacetate dimer $(0.01 \mathrm{~mol})$ and few drops of triethylamine in 1,4 -dioxan $(20 \mathrm{ml})$ was refluxed for $8-12 \mathrm{~h}$. After removel of the solvent, the residue was chromatographed on silica gel using $\mathrm{EtOAc} / \mathrm{CHCl}_{3}$ $4: 1$ as eluent.

Ethyl 2-Amino-5-benzoyl-3-cyano-4-hydroxybenzoate (6a).
This compound was obtained in yield (63%), mp. $205^{\circ} \mathrm{C}$; ir (KBr) vmax $/ \mathrm{cm}^{-1}: 3430(\mathrm{OH}), 3420\left(\mathrm{NH}_{2}\right), 2985(\mathrm{CH}$ aliph), $2187(\mathrm{CN}), 1710\left(\mathrm{CO}\right.$, ester), $1658(\mathrm{CO}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=310\left(\mathrm{M}^{+}\right.$, $13.5 \%) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl sulfoxide- $\left.\mathrm{d}_{6}\right): \delta(\mathrm{ppm})=1.34(\mathrm{t}, 3 \mathrm{H}$, $\left.J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.10\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.03(\mathrm{~b}, 2 \mathrm{H}$, NH_{2}), 7.14-7.83 (m, 6H, H-Ar), $13.1(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, $65.80 ; \mathrm{H}, 4.51, \mathrm{~N}, 9.03 \%$. Found C, 65.50; H, 4.50; N, 9.30.

Ethyl 2-Amino-3-cyano-4-hydroxy-5-(p-methylbenzoyl)benzoate ($\mathbf{6 b}$).

This compound was obtained in yield (58\%), mp $220{ }^{\circ} \mathrm{C}$; ir (KBr) vmax $/ \mathrm{cm}^{-1}: 3450(\mathrm{OH}), 3422\left(\mathrm{NH}_{2}\right), 2958(\mathrm{CH}$ aliph $)$, 2195 (CN), 1708 (CO, ester), 1645 (CO); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl sul-foxide- d_{6}): $\delta(\mathrm{ppm})=1.41\left(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.73(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $4.32\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.93\left(\mathrm{~b}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.13-$ 7.72 (m, 5H, H-Ar), $12.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 66.66; H, 4.93, N, 8.64%. Found C, 66.60; H, 4.80; N, 8.80.

Ethyl 2-Amino-3-cyano-4-hydroxy-5-(4-methoxybenzoyl)benzoate ($6 \mathbf{c}$).

This compound was obtained in yield (53\%), mp $195{ }^{\circ} \mathrm{C}$; ir (KBr) vmax $/ \mathrm{cm}^{-1}: 3465(\mathrm{OH}), 3435\left(\mathrm{NH}_{2}\right), 2982(\mathrm{CH}$ aliph $)$, $2190(\mathrm{CN}), 1715$ (CO, ester), $1638(\mathrm{CO}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=340\left(\mathrm{M}^{+}\right.$, $35 \%) .{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl sulfoxide- $\left.\mathrm{d}_{6}\right): \delta(\mathrm{ppm})=1.34(\mathrm{t}, 3 \mathrm{H}, J=$ $\left.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.41\left(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $5.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.03-7.71(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 12.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}: \mathrm{C}, 63.52 ; \mathrm{H}, 4.70, \mathrm{~N}, 8.23 \%$. Found C, 63.50; H, 4.80; N, 8.10.

Preparation of Compounds (9a-c) and 10.
General Procedure.
To a solution of enaminones $1 \mathbf{a - c}(0.01 \mathrm{~mol})$ in absolute ethanol $(30 \mathrm{ml})$ and malononitrile dimer $(0.01 \mathrm{~mol})$ a few drops of piperidine were added. The mixture was refluxed for 7-9 h. The solvent was evaporated under reduced pressure, and the solid product so formed was collected by filtration washed several time with water dried and recrytallized from benzene in case of 9a,c and $\mathbf{1 0}$ and ethanol in case of 9b, compound 9a and 10 were separated by fractional crystallization from benzene to afforded insoluble 10 (23%) and soluble 9 (35%) which precipitate on cooling.
2-[3-Cyano-6-phenylpyridin-2-(1H)-ylidene]malononitrile (9a).
This compound was obtained in yield (35\%), mp $315{ }^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) \mathrm{vmax} / \mathrm{cm}^{-1}: 3340(\mathrm{NH}), 2210,2187(3 \mathrm{CN}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=244$ $\left(\mathrm{M}^{+}, 100 \%\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl sulfoxide- $\left.\mathrm{d}_{6}\right): \delta(\mathrm{ppm})=$ 7.51-7.80 (m, 5H, H-Ar), 8.31 (d, $1 \mathrm{H}, J=6 \mathrm{~Hz}, 4 \mathrm{H}$-pyridine), $8.63(\mathrm{~d}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, 5 \mathrm{H}$-pyridine), $10.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~N}_{4}: \mathrm{C}, 73.77 ; \mathrm{H}, 3.27, \mathrm{~N}, 22.95 \%$. Found C, 74.0; H, 3.20; N, 23.10.

2-[3-Cyano-6-(p-tolyl)pyridin-2-(1H)-ylidene]malononitrile (9b).
This compound was obtained in yield (55%), mp $298{ }^{\circ} \mathrm{C}$; ir (KBr) $v m a x / \mathrm{cm}^{-1}: 3330(\mathrm{NH}), 2989(\mathrm{CH}$ aliph), 2215, 2195 $(3 \mathrm{CN}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=258\left(\mathrm{M}^{+}, 100 \%\right) .{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl sulfoxide$\left.\mathrm{d}_{6}\right): \delta(\mathrm{ppm})=2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.31-7.71(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.42$ (d, $1 \mathrm{H}, J=8 \mathrm{~Hz}, 4 \mathrm{H}-$ pyridine), 8.59 (d, $1 \mathrm{H}, J=8 \mathrm{~Hz}, 5 \mathrm{H}-$ pyridine), $10.13(\mathrm{~b}, 1 \mathrm{H}, \mathrm{NH})$
Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{4}: \mathrm{C}, 74.41 ; \mathrm{H}, 3.87, \mathrm{~N}, 21.70 \%$. Found C, 74.50; H, 3.60; N, 21.90.
2-[3-Cyano-6-(p-methoxyphenyl)pyridin-2-(1 H)-ylidene]malononitrile (9c).

This compound was obtained in yield (93%), mp $315{ }^{\circ} \mathrm{C}$; ir (KBr) vmax/ cm^{-1} : $3305(\mathrm{NH}), 2984$ (CH aliph), 2218, 2192 $(3 \mathrm{CN}) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl sulfoxide- d_{6}): $\delta(\mathrm{ppm})=3.54(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 7.13-7.82 (m, 4H, H-Ar), 8.31 (d, $1 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, 4 \mathrm{H}$-pyridine), $8.71(\mathrm{~d}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, 5 \mathrm{H}$-pyridine), $10.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.
Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 70.07 ; \mathrm{H}, 3.64, \mathrm{~N}, 20.43 \%$. Found C, 70.20; H, 3.40; N, 20.60.
6-Benzoyl-1,3-diamino- -2,4-dicyanobenzene (10).
This compound was obtained in yield (23%), mp $325{ }^{\circ} \mathrm{C}$; ir (KBr) vmax $/ \mathrm{cm}^{-1}: 3490,3340,3230\left(\mathrm{NH}_{2}\right), 2218(2 \mathrm{CN}), 1647$ (CO); ms: $\mathrm{m} / \mathrm{z}=262\left(\mathrm{M}^{+}, 52 \%\right),{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl sulfoxide- d_{6}): $\delta(\mathrm{ppm})=6.35\left(\mathrm{~b}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.35-7.86(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.72(\mathrm{~b}$, $2 \mathrm{H}, \mathrm{NH}_{2}$).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 68.70 ; \mathrm{H}, 3.81, \mathrm{~N}, 21.37 \%$. Found C, 68.60; H, 3.90; N, 21.30.

4-Aryl-2-methylpyridine-3-carbonitrile (15a-c).
General Procedure.
A mixture of each compound 1a-c (0.01 mol) and acetonitrile dimer $12(0.015 \mathrm{~mol})$ was refluxed in ethanol $(30 \mathrm{ml})$ in presence of sodium ethoxide $(0.01 \mathrm{~mol})$ for $3-6 \mathrm{~h}$. The solvent was removed and the residue was chromatographed on silica gel using EtOAc/petroleum ether 60-80 (3:7) as eluent. The product was crystallized from ethanol.

3-Cyano-2-methyl-4-phenylpyridine (15a).

This compound was obtained in yield (67%), mp $135{ }^{\circ} \mathrm{C}$; ir (KBr) $\mathrm{vmax} / \mathrm{cm}^{-1}: 2923$ (CH aliph), $2221(\mathrm{CN}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=194$ $\left(\mathrm{M}^{+}, 100 \%\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl sulfoxide- $\left.\mathrm{d}_{6}\right): \delta(\mathrm{ppm})=2.84(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 7.21-7.91 (m, 5H, H-Ar), 8.07 (d, 1H, J=4 Hz, H-5pyridine), 8.17 (d, $1 \mathrm{H}, J=4 \mathrm{~Hz}, \mathrm{H}-6$ pyridine).
Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2}$: C, $80.41 ; \mathrm{H}, 5.15, \mathrm{~N}, 14.43 \%$. Found C, 80.50; H, 5.10; N, 14.30.

3-Cyano-2-methyl-4-(p-tolyl)pyridine (15b).

This compound was obtained in yield (62%), mp $143{ }^{\circ} \mathrm{C}$; ir (KBr) $\mathrm{vmax} / \mathrm{cm}^{-1}: 2989$ (CH aliph), $2218(\mathrm{CN}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=208$ $\left(\mathrm{M}^{+}, 100 \%\right) .{ }^{1} \mathrm{H} \mathrm{nmr}$ (dimethyl sulfoxide- $\left.\mathrm{d}_{6}\right): \delta(\mathrm{ppm})=2.21(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.89 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 7.1-7.83 (m, 4H, H-Ar), 8.03 (d, $1 \mathrm{H}, J=4 \mathrm{~Hz}, \mathrm{H}-5$ pyridine), 8.06 (d, $1 \mathrm{H}, J=4 \mathrm{~Hz}, \mathrm{H}-6$ pyridine).
Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2}$: C, 80.76; H, 5.76, N, 13.46%. Found C, 80.60; H, 5.60; N, 13.50.

3-Cyano-2-methyl-4-(p-methoxyphenyl)pyridine (15c).
This compound was obtained in yield (65%), mp $128{ }^{\circ} \mathrm{C}$; ir (KBr) vmax $/ \mathrm{cm}^{-1}: 2998$ (CH aliph), 2215 (CN); ${ }^{1} \mathrm{H} \mathrm{nmr}$
(dimethyl sulfoxide- d_{6}): $\delta(\mathrm{ppm})=2.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.56(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 7.35-7.89 (m, $\left.4 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 8.04$ (d, $1 \mathrm{H}, \mathrm{J}=4 \mathrm{~Hz}, \mathrm{H}-5$ pyridine), $8.08(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}, \mathrm{H}-6$ pyridine $)$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ C, $75.0 ; \mathrm{H}, 5.35, \mathrm{~N}, 12.50 \%$. Found C, 75.0; H, 5.40; N, 12.60.
Preparation of compounds (18a-c) and (21a-c).
General Procedure.
A mixture of enaminones $\mathbf{1 a - c}(0.01 \mathrm{~mol})$ and ethylene diamine or o-phenylene diamine (0.01 mol) in absolute ethanol $(30 \mathrm{ml})$ was refluxed for $5-8 \mathrm{~h}$. The solvent was partially removed and the solid product so formed was collected on cooling and recrytallized from ethanol.

5-Phenyl-1,2,3-trihydro[1,4]diazepine (18a).

This compound was obtained in yield (85%), mp $192{ }^{\circ} \mathrm{C}$; ir (KBr) $\mathrm{vmax} / \mathrm{cm}^{-1}$: $3310(\mathrm{NH}), 2985(\mathrm{CH}$ aliph); ms: $\mathrm{m} / \mathrm{z}=172$ ($\mathrm{M}^{+}, 86 \%$); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta(\mathrm{ppm})=3.34(\mathrm{t}, 4 \mathrm{H}$, $\left.J=6.4,2 \mathrm{CH}_{2}\right), 5.7(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{H}-6), 6.73(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}$, H-7), 7.15-7.75 (m, 5H, H-Ar), 10.46 (b, 1H, NH).

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2}$: C, $76.74 ; \mathrm{H}, 6.97, \mathrm{~N}, 16.27 \%$. Found C, 76.70; H, 6.90; N, 16.30.
5-(p-Tolyl)-1,2,3-trihydro[1,4]diazepine (18b).
This compound was obtained in yield (80%), mp $200^{\circ} \mathrm{C}$; ir $(\mathrm{KBr}) \mathrm{vmax} / \mathrm{cm}^{-1}: 3340(\mathrm{NH}), 2985(\mathrm{CH}$ aliph); ms: $\mathrm{m} / \mathrm{z}=186$ ($\mathrm{M}^{+}, 38 \%$); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta(\mathrm{ppm})=2.38(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $3.42\left(\mathrm{t}, 4 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.6(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{H}-6)$, $6.80(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{H}-7), 7.23(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.46$ (d, $2 \mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}$), 10.36 (b, 1H, NH).

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}$: C, $77.41 ; \mathrm{H}, 7.52, \mathrm{~N}, 15.05 \%$. Found C, 77.50; H, 7.40; N, 15.10.

5-(p-Methoxyphenyl)-1,2,3-trihydro[1,4]diazepine (18c).

This compound was obtained in yield (82%), mp $183{ }^{\circ} \mathrm{C}$; ir (KBr) vmax $/ \mathrm{cm}^{-1}$: $3339(\mathrm{NH}), 2985(\mathrm{CH}$ aliph); ms: $\mathrm{m} / \mathrm{z}=202$ ($\mathrm{M}^{+}, 53 \%$). ${ }^{1} \mathrm{H}$ nmr (deuteriochloroform): $\delta=3.46$ (d, 4 H , $2 \mathrm{CH}_{2}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.83(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{H}-6), 6.83(\mathrm{~d}$, $1 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{H}-7), 7.19(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 7.93(\mathrm{~d}, 2 \mathrm{H}, J=$ $8 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ar}), 10.32$ (b, 1H, NH).

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 71.28 ; \mathrm{H}, 6.93, \mathrm{~N}, 13.86 \%$. Found C, 71.40; H, 7.10; N, 13.80.
(Z)-3-(2-Aminoanilino)-1-phenylprop-2-en-1-one (21a).

This compound was obtained in yield (78%), mp $145{ }^{\circ} \mathrm{C}$; ir (KBr) $\mathrm{vmax} / \mathrm{cm}^{-1}: 3450,3320\left(\mathrm{NH}_{2}, \mathrm{NH}\right), 2985(\mathrm{CH}$ aliph $), 1640$ (CO); ms: $\mathrm{m} / \mathrm{z}=238\left(\mathrm{M}^{+}, 65 \%\right) ;{ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta=3.77\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$ exchangable), $6.04(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}$, CH-vinyl), 6.62-7.72 (m, 9H, H-Ar), 8.2 (d, 1H, J = 9 Hz , CH -vinyl), 12.13 (b, 1H, NH exchangeable).

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 75.63 ; \mathrm{H}, 5.88, \mathrm{~N}, 11.76 \%$. Found C, $75.60 ;$ H, 5.80; N, 11.80.

(Z)-3-(2-Aminoanilino)-1-(p-tolyl)prop-2-en-1-one (21b).

This compound was obtained in yield (80%), mp $205^{\circ} \mathrm{C}$; ir (KBr) vmax $/ \mathrm{cm}^{-1}$: 4450, $3340\left(\mathrm{NH}_{2}, \mathrm{NH}\right), 2985(\mathrm{CH}$ aliph $)$, 1638 (CO); ms: $\mathrm{m} / \mathrm{z}=252\left(\mathrm{M}^{+}, 43 \%\right) ;{ }^{1} \mathrm{H}$ NMR (deuteriochloroform): $\delta=2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.77\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$ exchangable), 6.04 (d, $1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{CH}$-vinyl), 6.79-7.89 (m, $8 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 8.17$ (d, $1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{CH}$-vinyl), 12.19 (b, 1 H , NH exchangeable).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 76.19 ; \mathrm{H}, 6.34, \mathrm{~N}, 11.11 \%$. Found C, 76.20; H, 7.20; N, 11.20.
(Z)-3-(2-Aminoanilino)-1-(p-methoxyphenyl)prop-2-en-1-one (21c).

This compound was obtained in yield (78\%), mp 185-186 ${ }^{\circ} \mathrm{C}$; ir (KBr) vmax/cm ${ }^{-1}$: 4460, $3340\left(\mathrm{NH}_{2}, \mathrm{NH}\right), 2995$ (CH aliph), 1641 (CO); ms: m/z = $268\left(\mathrm{M}^{+}, 38 \%\right) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta=3.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.75(\mathrm{~s}, 2 \mathrm{H}$, NH_{2} exchangable), $6.10(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{CH}$-vinyl), 6.78-7.94 (m, 8H, H-Ar), 8.4 (d, $1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{CH}$-vinyl), $12.30(\mathrm{~b}, 1 \mathrm{H}, \mathrm{NH}$ exchangeable).
Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $71.64 ; \mathrm{H}, 5.97, \mathrm{~N}, 10.44 \%$. Found C, 71.60; H, 5.90; N, 10.50.

Preparation of (E)-1-Aryl-3-(1H-1,2,3-benzotriazol-1-yl)-prop-2-en-1-one 22a-c.

General Procedure.
Method A:
A solution of glacial acetic acid $(10 \mathrm{ml})$ was added dropwise to a stirred suspension of 22a-c $(0.01 \mathrm{~mol})$ and sodium nitrite $(0.015 \mathrm{~mol})$ in water $(2 \mathrm{ml})$ at room temperature for 3 h , the precipitate was collected by filtration and recrystallized from ethanol.

Method B:

The same experimental described above for preparation 18a-c by using benzotriazole (0.01 mole) instead of ethylene diamine. The solid formed crystallized from ethanol.

(E)-3-(1H-1,2,3-Benzotriazol-1-yl)-1-phenylprop-2-en-1-one (22a).

This compound was obtained in yield (53\%), mp $134{ }^{\circ} \mathrm{C}$; ir (KBr) $\mathrm{vmax} / \mathrm{cm}^{-1}: 2989(\mathrm{CH}$ aliph), $1649(\mathrm{CO}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=249$ ($\mathrm{M}^{+}, 10 \%$); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta=7.12-7.83$ ($\mathrm{m}, 10 \mathrm{H}$, $\mathrm{H}-\mathrm{Ar}$, vinyl-H), 8.51 (d, $1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{CH}$-vinyl).
Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 72.28 ; \mathrm{H}, 4.41, \mathrm{~N}, 16.86 \%$. Found C, 72.30; H, 4.50; N, 16.70.
(E)-3-(1H-1,2,3-Benzotriazol-1-yl)-1-(p-tolyl)prop-2-en-1-one (22b).

This compound was obtained in yield (56%), $\mathrm{mp} 122{ }^{\circ} \mathrm{C}$; ir (KBr) vmax $/ \mathrm{cm}^{-1}: 2985(\mathrm{CH}$ aliph $), 1648(\mathrm{CO}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=263$ ($\mathrm{M}^{+}, 38 \%$); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta=2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 7.12-7.78 (m, 9H, H-Ar, vinyl-H), $8.62(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}$, CH-vinyl)

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 73.00 ; \mathrm{H}, 4.94, \mathrm{~N}, 15.96 \%$. Found C, 73.10; H, 4.90; N, 15.90.
(E)-3-(1H-1,2,3-Benzotriazol-1-yl)-1-(p-methoxyphenyl)prop-2-en-1-one (22c).

This compound was obtained in yield (63%), mp $143{ }^{\circ} \mathrm{C}$; ir (KBr) vmax $/ \mathrm{cm}^{-1}: 2983$ (CH aliph), $1650(\mathrm{CO}) ; \mathrm{ms}: \mathrm{m} / \mathrm{z}=279$ ($\mathrm{M}^{+}, 25 \%$); ${ }^{1} \mathrm{H} \mathrm{nmr}$ (deuteriochloroform): $\delta=3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 7.10-7.81 (m, 9H, H-Ar, vinyl-H), 8.93 (d, $1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{CH}$-vinyl).

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, $68.81 ; \mathrm{H}, 4.65, \mathrm{~N}, 15.05 \%$. Found C, 68.80; H, 4.70; N, 15.10.

REFERENCES AND NOTES

[^0]
[^0]: [*] To whom correspondence should be addressed: E-mail: abuzeid5@hotmail.com.
 [1] J. V. Greenhill, Chem. Soc. Revs. 6, 277 (197), and references cited therein.
 [2] A. Al-Anezi, B. Al-Saleh and M. H. Elnagdi, J. Chem. Res. (S) 4, (M) 0116 (1997).
 [3] F. M. A. El-Taweel and M. H. Elnagdi, J. Heterocyclic Chem., 38, 981 (2001).
 [4] B. Al-Saleh, N. Al-Awadi, H. Al-Kanderi, M. M. AbdelKhalik and M. H. Elnagdi, J. Chem. Res. (S) 16, (M) 201 (2000).
 [5] K. M. Al-Zaydi, E. A. Hafez and M. H. Elnagdi, J. Chem. Res. (S) 4, (M) 510 (2000).
 [6] F. Al-Omran, N. Al-Awadi, A. Abou El-Kair and M. H. Elnagdi, Org. Preparation and Procedures International, 29(3) 285 (1997).
 [7] S. Tseng, J. W. Wpstein, H. J. Brabander and G. Franscisco, J. Heterocyclic Chem., 24, 837 (1987).
 [8] M. M. Abdel-Khalik and M. H. Elnagdi, Synthetic Commun., 32 (2) 159 (2002).
 [9] B. Al-Saleh, M. M. Abdel-Khalik, A. Eltoukhy and M. H. Elnagdi, J. Heterocyclic Chem., 39, 1035 (2002).

